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Abstract 

A beam  theory,  which  includes  the 

shear  deformation  and  rotatory  inertia 

effects  of  transverse 

and  whose  kinetic  and 

potential  energy  may  be  written  in  terms  of a single  depen- 

dent  variable,  is  developed  in  this  paper.  This  simplifica- 

tion  will  reduce  the  computational  effort  required  in  the 

analysis  of  complex  beams  or  structures  composed  of a number 

of  beams.  This  is  accamplished  by  neglecting  the  coupling 

between  the  transverse  shear  deformation  and  the  rotatory 

inertia.  Comparisons  of  natural  frequencies  calculated  by 

this  theory  with  those of the  Timoshenko  theory  show  that 

this  coupling  is  indeed  negligible. 

'This work  was  sponsored by NASA  under  Research  Grant  NGR 37- 
003-035, with  Mr. John L.  Sewall,  Dynamic  Loads  Division,  Langley 
Research  Center  acting  as  technical  monitor. 



Introduction 

T h e '  Ti~noshenko theory of vibrating b.eams 111 has been 2. 

thebasis  of a large number'of investigations  into the effects 

of transverse  shear deformation and rotatory  inertia on the 

dynamics of beams. I t  has been  used extensively- because it is 

simple t o  formulate and its results compare very  well  with 

those  obtainable by l inear  elasticity theory [2,3] . In ex- 

change for the accuracy of this  theory as compared to  the 

classical  Bernoulli-Euler beam theory, it is necessary to  

introduce an additional dependent variable, thus complicating 

the  solution. While the  addition of this  variable is not of 

serious consequence in  many of the  simpler beam problems, it 

can  be a considerable  disadvantage if  an approximate solution 

by the methods  of R i t z  o r  Galerkin is being sought for a canplex 

beam or  a structure ccarrpased of a number of beams. 

In this paper, the energy expressions for a beam theory, 

which includes  the  effects of transverse  shear deformation and 

rotatory  inertia and  which may be written  in terms of a single 

dependent variable,  are developed. To accomplish this, it 

is necessary t o  neglect  the coupling  bemeen the  transverse 

shear deformation and the  rotatory  inertia. The natural  fre- 

quencies of a simply supported and a cantilevered beam calculated 

with. this theory compare very  well t o  those determined by- the 

Timoshenko theory, implying that the neglect of this coupling 

h e r s  in  brackets  designate  references a t  the end of the paper. 
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is justified. 

Namemlature. 
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beam cross-sectional  area 

Young's  .modulus 

shear modulus 

depth of rectangular beam 

moment of inertia of beam cross  section about the y-axis 

transverse shear coefficient 

length of beam 

bending moment 

vibration mode (1, 2,  3, etc.) 

time 

kinetic energy 

shear  force 

total  deflection of neutral  axis 

deflection due t o  bending moment 

deflection due t o  shear  force 

E1 /kGA 
wavelength  of vibration 

density of beam material 

frequency 

; @2 
Theory  Development 

Let w be the total  deflection of the beam's neutral axis, 

see Figure 1. 'This deflection may be divided  into.tw0 components, 

that  due to  the bending moment  and that due to  transverse  shear 
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deformation. Thus 
w = Wb + ws (1) 

The shear  deflection, ws, may be related  to  the  shear  strain 

in the beam in several ways (see  reference [4] for example)  and 

the  value of the transverse  shear  coefficient is dependent on this  

relationship. However, for our  purposes, it is only  necessary to  

s ta te   that  

where k is the  appropriate  transverse  shear  coefficient. 

The bending moment is given by 

The s t ra in  energy due to  the bending moment  and the  shear 

force is 
u = 1 / 2  1 c, + ml dx R M2 V2 

0 

and the  translational and rotatory  kinetic energy is 

where the  dot above a variable denotes differentation with res- 

pect t o  time. 

In  the energy formulation of the Timoshenko theory,  equations 

(1, 3, 4) are  substituted  into equations (5, 6) which gives energy 

expressions which are  functions of two variables,  for example, w 

and wb. 

If it is assumed that, for  the purpose of determining the 

shear  force and,  hence, the  shbar  deflection,  the  rotatory 

iner t ia  is negligible, then 

V = - 
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Thus, the  shear  force is related t o  the hending moment just as 

it is in s t a t i c  beam theory. Note that the rotatory  inertia 

has not been neglected  altogether  as it still appears in the 

second term of equatzon (6). In  fact, only' the coupling .between 

.the  rotatory.inertia and the  transverse  shear  force, and  hence, 

tihe transverse  shear  deflection, has been omitted. 

Ccrmbhiig equations (3, 4, and 7) , 
w = - c r w  

,x b,= 

where a = EI/M;A. 

Equation (8) may be integrated t o  determine the  shear 

deflection 

W = - a W  
S b,= + c ( t )  (9) 

C(t) is determined from the end conditions. However, because C(t) 

influences  the energy only through the sum w = wb + ws, it will be 

deleted from equation (9) with  the  understanding that it may be 

added to  wb (or w) t o  satisfy  the end conditions. 

The energy expressions (5,6) may now be written in  tenns of 

the bending deflection, wb Thus 

U = (1/2) /: E1 C W ~ , ~  + a w2 1 dx 
b ,= (10) 

T = (1/2). 1: p A I[+,, - b! Gb,- l 2  + A .  1 ;2 c.111 
The end conditions  are  taken..to be similar t o  those of the 

Timoshenko theory. 'The natural end conditions  (those- end condi- 

tions for which the  forces and  moments a t  the end do no  work) 

are  either 
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M = E I w  = o  
b,= 

or 

w = o  
b,x 

and,  either 

V =  - E1 w = o  
b,= 

or 

(12-a) 

(12-b) 

(12-c) 

(12-d) 

Application  to a Uniform  Simply-Supported  Beam 

The  end  conditions  (12-a,d)  are  satisfied  at x = 0, R if 

wb = A sin nrx/a sin wt  (13) 

With  equations  (10, 11, and  13),  the  natural  frequencies 

may  be  calmlated  by  Rayleigh's  method 

where 

wl = 2 ,/$ , natural  frequencies  of  the  simply 
supported  Bernoulli-Euler  beam 

The  ratio a€ bending  deflection  to  total  deflection  may  be 

shown to  be 

Figure 2 ccnnpares  the  frequencies  calculated  with  the 
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present  analysis  to  those of the  Timoshenko  theory  (see  Appendix) 

for a rectangular  bar  of  material  with  Poisson's  ratio 0.3. The 

shear  coefficient, k was  taken  to  be  0.85 as recommended  by 

Cowper [4] . 
The  frequencies  are  plotted  over a wide  range  of  the  variable 

3 which  is a measure  of  the  depth  of  the  beam  to  the  wavelength  of 

the  vibration.  For  the  rectangular  beam,  for  example, 

where h = depth  of  the  beam 

v = 2a/n, wavelength 

The  range  of (h/v) in Figures 3, 4, 5 is  from 0.06 to  1.8,-  the 

upper  limit  being  much  higher  than  one  would  expect  to  encounter 

in determining  the  first  few  frequencies  of a beam.  However,  the 

upper  limit  was  selected  to  show  the  wide  range  of  agreement  between 

the  present  analysis  and  the  Timoshenko  theory. 

As is  seen  in  Figure 2,  the  agreement  between  the  two  theories 

is  excellent  up  to 5 = 10.  The  values of ( w / w ~ )  calculated  by 

the  Timoshenko  theory  were  slightly  lower  than  those  of  equation 

(14),  the  maximum  difference  being  about  1.25%  for 5 1. The 

differences  for  values  of 5 < 1 and 5 > 1 are  less  than  1.25%. 

The  ratio  of  deflection  due  to  bending  moment to the  total 

deflection  for  the  simply  supported  beam  is  shown  in  Figure 3. 

The  discrepancy  between  the two theories  is  more  apparent in the 

deflections  but  is  still  not  excessive  if 3 0.5  which  correspond 

to a depth  to  wavelength  ratio  of  about 0.4. Because  the  present 
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analysis  underestimates  the  bending  deflection,  it  will  yield 

values  for  the  shear  deflection  which  are  too  large.  This  is 

verified  in  Figure 4 which  shows  the  shear  force  in a simply- 

supported  beam  normalized  by 

which  is  the  shear  force  corresponding  to  the  Bernoulli-Euler 

theory  and  is  equal  to  the  shear  force  predicted  by  the  present 

theory. As would  be  expected,  the  agreement  between  the  present 

approximation  and  Timoshenko  beam  theory  is  much  worse  for  the 

shear  force  than  the  natural  frequencies,  but  the  error  is  less 

than  10%  if 5 < 0.1  or  if  the  hedght  to  wavelength  ratio  is  less 

than 0.18. 

Application  to a Uniform  Cantilevered  Beam 

The Rayleigh-Ritz  method  is  applied  to  the  energy  expressions, 

equations  (10,  11)  to  obtain an approximate  solution  for  the 

natural  frequencies  of a uniform  beam  of  length R, clamped  at 

x = 0. The  bending  deflection  is  taken in the  form 

wb = 1 An  [Xn(x) + a X: (0) 3 sin ut 
n=l 

where  the  Xn (x) are  the  Bernoulli-Euler  eigenfunctions  for  the 

clamped-free  beam [5]  and  the X; = an/&.  Equation  (16)  satis- 

fies  the  end  conditions  (12-b,  d)  at  x=O  and  (lZ-a,c)  at X=R. 

The  maximum  kinetic  and  potential  energies  may  be  calculated 

with  eqs.  (10,  11, 16). 
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m m 

‘max = 1 / 2  E1 /’ 0 C ( n=l 1 An X;; (X))’ + a ( n=l 1 An X:‘ ( x ) ) ~ }  dx 
(18) 

Applying the Rayleigh-Ritz  technique t!o eqs. (17,18) with 

the  aid of the beam eigenfunction integrals  tabulated by Fel- 

gar [6] , resul ts   in  

1 (Kin - x Min) An = 0 i = 1, 2, . . . 
n=l 
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Numerical values of an and Bn are given i n  reference [SI. 

Equations (19) may be solved approximately .by considering 

only the first few t e r n  i n  the.series. The problem is then a 

linear eigenvalue problem  and may be solved any  of the  standard 

numerical techniques. 

Table 1 compares the  five lowest frequencies of a clamped- 

free uniform beam for  four  gemetrical  configurations  calculated 

with  equation (19) to  values given by the Timoshenko theory i n  

reference [7]. Seven terms were used i n  equation  (19), which 

w a s  sufficient  for 3-place accuracy in the f i f t h  lowest frequency 

when  compared to  a ten-term series. 

If we consider  only a single term in (19)  and neglect  the 

a2 tern in Min, the frequency equation is 

where 
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w = B i  E , natural frequency of ~ r n o u l l i - ~ l e r  2 

clamped-free beam 

The term  which was neglected in  arriving  at  equation (20) can 

be shown t o  be the  contribution of the  shear  deflection  to  the 

translational  kinetic energy and the terms  remaining in the 

dencnninator of (20) are  the  contributions of the bending deflec- 

tion, and the  rotatory  inertia. Equation (20) w i l l  give  values 

of the frequency larger than  those  calculated  with (19)  and the 

error w i l l  increase as yn increases. 

The point  to be  made,  however, i n  presenting  equation (20) 

is that it suggests  the use of yn as a similariw parameter in 

plotting  the  frequencies. Figure 5 shows the  frequencies  calcu- 

lated  with  a  ten-tern  series in  equation (19) plotted as a 

function of yn for the f i r s t  four modes  of vibration. I t  is 

apparent that yn serves reasonably well as a similarity para- 

meter since  the  values tend t o  l i e  on a single curve. 
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It is evident, from the excellent agreement  hetween the 

natural  frequencies  calculated with this analysis and those of 

fhe Tmoshenko theory, that the  neglect of the caupling between 

the rotatory  inertia and the  transverse  shear deformation is 

justified. 'The energy expressions  equations (10, 11), in  

which the  present theory is embodied, are  slightly more  complex 

than those of the Timoshenko theory,  but, because they are 

functions of a single dependent variable,  a  considerable shtpli- 

fication  in  the  solution t o  problems t o  which they are  applied 

will result. 

The concept used t o  develop this theory, that is, ignoring 

the coupling between the  transverse  shear deformation and the 

rotatory  inertia, would  seem t o  be applicable t o  plates and 

shells  as  well as beams. A study has been initiated t o  do this 

and it w i l l  be interesting t o  see i f  this w i l l  agree as well 

with the Mindlin theory,  reference (8), as the  present  analysis 

agrees  with  the Timoshenko theory. 

12 
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APPENDIX 

The  equations  governing  the  motion of a Timoshenko  beam  are 

v = kGA (w,x - w ) 
b ,x 

M = E I w  

V,x = pAG 
b,= 

Mpx + V = PI  wb,x (A- 4) 

For the simply  supported  beam,  the  deflections  are of the form 

w = C1 sin nvx/R  sin  wt (A- 5) 

wb = Cz  sin n.rrx/k sin ut (A- 6) 

Substitution of equations  (A-5,-6)  &to  (A-1,-4)  eventually 

leads  to 

where 

V1 = - E1 w 
b,= 

14 



Tab1 .e  1.  Ccanparison  of  the  natural  frequencies of a uniform 
cantilevered  beam  calculated w i t h  the  present  theory 
to  those  of  the  Timoshenko  Theory. 

"" ~ E/kG = 4, I /h2  = 4x10m4 
n 1 2 3 4 5 

(L)2 W 1  a .99080  .93925  .86773  .7824  .696 

b .99081 93881 86758 77710  .69535 

E/kG = 6.25, I / h 2  = 4x10- 4 
~ 

n 1 2 3 4 5 

a .98671  .91421  .81909  ,7128  .612 
(% a1 b .98671  .91398  .81901  .71254  .61175 

E/kG = 1.78, I / h 2  = ~ x I O - ~  
n 1 2 3 4 5 

a .98854  .92540  .84144  .7461  .654 
f L 1  
\U1' b .98854  .92504  .84116  .74514  .65205 

E/kG = 2.78, I / h 2  = ~ x I O - ~  
n 1 2 3 4 5 

a .98447  .90121  .79640  .6843  .582 
(W) 

W 1  b .98447  .go112  .79609  .68318  .58030 

Nuation (19) , 7 terms 

bTimoshenko  theory,  reference [ 71 
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- dx - 
V +  V,x dx 

Figure 1. Coordinates and Notation 
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Figure 2. Effect of Shear Deformation and Rotatory Inertia 
on the Natural Frequency of a Simply supported 
Beam. 
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Figure 3. Effect  of Shear Deformation and Rotatory Inertia 

Simply Supported Beam. 
on the Deflection due to Bending  Mment in a 

E =  
K G  3.06 

0.0 I 0.1 1.0 IQO 

Figun 4. Effect of Shear Deformation and Rotatory Inertia 
on the Shear Force in a Simply Supported Beam. 
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Figure 5. Effect  of Shear Defmation and Rotatory Inertia 
on the Natural Frequency of a  Cantilevered Beam. 
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